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Decoding Strategy with Perceptual Rating Prediction 

for Language Model-Based Text-to-Speech Synthesis

Proposed method: Best-Of-𝑲 selection based on Perceptual Rating Prediction (BOK-PRP)

Perceptual rating predictor
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Overview: Exploring decoding strategies for language model (LM)-based text-to-speech (TTS)

Experimental evaluation: Is BOK-PRP effective in improving the naturalness of synthetic speech?

Sequence-wise BOK-PRP / Block-wise BOK-PRP

Future direction

Conventional decoding strategies

Top-k sampling [2] / Top-p sampling [3] Challenges of sampling-based decoding strategies

Ablation study on 𝑲

⚫ Background: LM-based TTS model has recently attracted much attention

○ LM autoregressively generates discrete speech tokens such neural audio codec [1]

⚫ Question: Which is the optimal decoding strategy for LM-based TTS?

○ Decoding: Process of selecting output tokens based on the probability distribution computed by LMs

○ ex. Greedy decoding: Deterministically selecting the token with the highest probability as the next token

• Lead to repetitive generation, causing the output to get stuck in loops of repeating the same tokens

⚫ Proposal: BOK-PRP, a novel sampling-based strategy for LM-based TTS

○ Incorporate best-of-𝑲 (BOK) selection based on perceptual rating prediction (PRP)

Method MOS (↑) UTMOS (↑)

Greedy decoding 3.35 ± 0.09 4.27

Naive sampling 3.57 ± 0.08 4.31

Top-k top-p sampling 3.62 ± 0.08 4.36

Sequence-wise BOK-PRP 3.71 ± 0.07 4.46

Block-wise BOK-PRP 3.73 ± 0.07 4.43

Ground truth 3.92 ± 0.07 4.43

Result of subjective evaluation

𝑲 MOS (↑) UTMOS (↑)

2 3.72 ± 0.08 4.40

4 3.74 ± 0.08 4.43

8 3.83 ± 0.07 4.43

16 3.79 ± 0.07 4.45

32 3.65 ± 0.08 4.46

⚫ Stochastically select tokens based on the distribution of tokens

○ Introduce diversity and effectively address repetitive generation

⚫ Rating: Naturalness Mean Opinion Score (MOS)

○ Perceptual rating predictor: UTMOS [4]

○ Note: Rating predictor for block-wise takes as input a 

waveform synthesized from partially decoded tokens

→ Introduce a truncation process into the training process

⚫ LM-based TTS model:

○ Transformer encoder-decoder TTS [5]

⚫ Discrete speech tokenizer: 

○ Descript Audio Codec (DAC) [6]

⚫ Dataset: LJSpeech [7] (24 hours)

○ Speech from a single English speaker 

⚫ Compared methods:

○ Greedy decoding

○ Naive sampling

○ Top-k top-p sampling 

○ Sequence-wise BOK-PRP (proposed)

○ Block-wise BOK-PRP (proposed)

⚫ Results of 5-point naturalness MOS:

○ Sampling-based strategies > Greedy decoding

○ Proposed strategy > Top-k top-p sampling 

⚫ The sample with the highest rating is selected from the 𝐾 samples from an LM-based TTS

200 native English speakers each evaluated 24 samples

BOK-PRP improves subjective naturalness

Excessively large 𝑲 degrades naturalness

⚫ Relationship between 𝐾 and MOS: 

○ Increasing 𝐾 from 2 to 8 improves MOS

○ Increasing 𝐾 from 8 to 32 degrades MOS

→ Selecting tokens based on higher UTMOS 
does not always improve the actual MOS

⚫ Extend BOK-PRP to perceptual rating predictions from various perspectives, such as emotional suitability, beyond naturalness
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Sampling candidates 
= The set of tokens with probability in the top k = 4
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Sampling candidates 
= The smallest set with cumulative probability p = 0.90 

top-k sampling (k = 4) top-p sampling (p = 0.90)

⚫ Challenge: Sampling randomness destabilizes generation

○ Sampling randomness can lead to undesirable output, such as artifact

○ To alleviate this, top-k / top-p sampling limit candidate tokens

○ However, narrowing down candidates reduces output diversity and can 

lead to repetitive generation issues

Filtering out undesirable outputs while maintaining diversity 

remains challenging!

Training process of the rating predictor for block-wise BOK-PRP 
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