Decoding Strategy with Perceptual Rating Prediction

for Language Model-Based Text-to-Speech Synthesis
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Overview: Exploring decoding strategies for language model (LM)-based text-to-speech (TTS)

® Background: LM-based TTS model has recently attracted much attention R _.||||“||,__
: o

O LM autoregressively generates discrete speech tokens such neural audio codec [1] :
® Question: Which is the optimal decoding strategy for LM-based TTS?
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Conventional decoding strategies

Top-k sampling [2] / Top-p sampling [3] Challenges of sampling-based decoding strategies
® Stochastically select tokens based on the distribution of tokens ® Challenge: Sampling randomness destabilizes generation
O Introduce diversity and effectively address repetitive generation o Sampling randomness can lead to undesirable output, such as artifact
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Proposed method: Best-Of-K selection based on Perceptual Rating Prediction (BOK-PRP)

Sequence-wise BOK-PRP / Block-wise BOK-PRP Perceptual rating predictor

® The sample with the highest rating is selected from the K samples from an LM-based TTS ® Rating: Naturalness Mean Opinion Score (MOS)
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Experimental evaluation: Is BOK-PRP effective in improving the naturalness of synthetic speech?

Experimental conditions Result of subjective evaluation Ablation study on K

® LM-based TTS model: ® Results of 5-point naturalness MOS: ® Relationship between K and MOS:
O Transformer encoder-decoder TTS [5] o Sampling-based strategies > Greedy decoding O Increasing K from 2 to 8 improves MOS
® Discrete speech tokenizer: O Proposed strategy > Top-k top-p sampling O Increasing K from 8 to 32 degrades MOS

O Descript Audio Codec (DAC) [6] BOK-PRP improves subjective naturalness — Selecting tokens based on higher UTMOS

® Dataset: LISpeech [7] (24 hours) does not always improve the actual MOS
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® Compared methods: Naive sampling 3.57 4+ 0.08 431
© Greedy decoding Top-k top-p sampling 3.62 + 0.08 4.36 2 3.72 £ 0.08 4.40
© Naive sampling Sequence-wise BOK-PRP | 3.71 + 0.07 4.46 4 3.74 £ 0.08 4.43
O Top-k top-p sampling Block-wise BOK-PRP 3.73 + 0.07 4.43 8 3.83 £ 0.07 +.43
O Sequence-wise BOK-PRP (proposed) Ground truth 3.92 + 0.07 4.43 16 3.7910.07 445
O Block-wise BOK-PRP (proposed) — 32 3.65 + 0.08 4.46

200 native English speakers each evaluated 24 samples

Future direction

® Extend BOK-PRP to perceptual rating predictions from various perspectives, such as emotional suitability, beyond naturalness
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