Decoding Strategy with Perceptual Rating Prediction for Language Model-Based Text-to-Speech Synthesis

Kazuki Yamauchi, Wataru Nakata, Yuki Saito, Hiroshi Saruwatari

The University of Tokyo, Japan

Overview: Exploring decoding strategies for language model (LM)-based text-to-speech (TTS)

- **<u>Background</u>**: LM-based TTS model has recently attracted much attention
 - LM autoregressively generates discrete speech tokens such neural audio codec [1]
- **Question**: Which is the **optimal decoding strategy** for LM-based TTS?
 - Decoding: Process of selecting output tokens based on the probability distribution computed by LMs 0
 - o ex. Greedy decoding: Deterministically selecting the token with the highest probability as the next token
 - Lead to **repetitive generation**, causing the output to get stuck in loops of repeating the same tokens
- **Proposal: BOK-PRP**, a novel sampling-based strategy for LM-based TTS
 - Incorporate **best-of-***K* (BOK) selection based on **perceptual rating prediction (PRP)** 0

MOONSHOT

Conventional decoding strategies

Top-k sampling [2] / Top-p sampling [3]

- **Stochastically** select tokens based on the distribution of tokens
 - Introduce diversity and effectively address repetitive generation

Challenges of sampling-based decoding strategies

- **<u>Challenge</u>**: Sampling randomness **destabilizes generation**
 - Sampling randomness can lead to undesirable output, such as artifact
 - To alleviate this, top-k / top-p sampling **limit candidate tokens** Ο
 - However, narrowing down candidates reduces output diversity and can 0

lead to repetitive generation issues

Filtering out undesirable outputs while maintaining diversity
remains challenging!

Proposed method: Best-Of-*K* selection based on Perceptual Rating Prediction (BOK-PRP)

0.03

frog dragon

Sequence-wise BOK-PRP / Block-wise BOK-PRP

Perceptual rating predictor

• Rating: Naturalness Mean Opinion Score (MOS)

The sample with the highest rating is selected from the K samples from an LM-based TTS

Compared methods:	Naive sampling	3.57 ± 0.08	4.31	K	$MOS(\uparrow)$	UTMOS (\uparrow)
 Greedy decoding 	Top- <i>k</i> top- <i>p</i> sampling	- 3.62 + 0.08	4.36	2	3.72 ± 0.08	4.40
 Naive sampling 	Sequence-wise BOK-PRP	-3.71 + 0.07	4.46	4	3.74 ± 0.08	4.43
o Top-k top-p sampling	Block-wise BOK-PRP	-3.73 + 0.07	4.43	8	3.83 ± 0.07	4.43
 Sequence-wise BOK-PRP (proposed) 	Ground truth	- 3 92 + 0 07	443	16	3.79 ± 0.07	4.45
 Block-wise BOK-PRP (proposed) 	Block-wise BOK-PRP (proposed) 200 native English speakers each evaluated 24 samples			32	3.65 ± 0.08	4.46

Future direction

• Extend BOK-PRP to perceptual rating predictions from various perspectives, such as emotional suitability, beyond naturalness

References

[1] N. Zeghidour et al., IEEE/ACM TASLP, 2021. [2] A. Fan et al., in Proc. ACL, 2018. [3] A. Holtzman et al., in Proc. ICLR, 2020. [4] T. Saeki et al., in Proc. INTERSPEECH, 2022. [5] W. Nakata et al., arXiv:2403.13720, 2024. [6] R. Kumar et al., in Proc. NIPS, 2023. [7] K. Ito et al., https: //keithito.com/LJ-Speech-Dataset/, 2017.

Saruwatari Lab., The University of Tokyo, Japan.

Audio Imagination@Vancouver, Canada.

©Kazuki Yamauchi, Dec. 2024.