# UTDUSS: UTokyo-SaruLab System for Interspeech2024 **Speech Processing Using Discrete Speech Unit Challenge**

## Wataru Nakata\*, Kazuki Yamauchi\*, Dong Yang, Hiroaki Hyodo, Yuki Saito (\*E. contribution) The University of Tokyo

## What is Discrete Speech Unit Challenge?[1]

**Traditional Speech processing paradigm** Mel-spectrogram as a speech representation Hello Acoustic Hello -Vocoder + **1**]]]]111 Example of Mel-spectrogram in TTS model 25 Works surprisingly well for most tasks Is this human designed feature optimal?

New Approach **Discrete speech feature obtained from ML** 

Process of discrete speech feature learning using VQVAE

- Optimal feature is obtained in End-to-End
  - How does this new feature perform on speech processing

Interspeech2024 Speech processing using discrete speech unit challenge (discrete challenge)

**Goal:** Promote research and **compare the** results in the speech processing with discrete speech representation

Four tracks:

- ASR (Automatic speech recognition)
- Vocoder
- Tracks we perticipated • TTS
- SVS

Our method: UTDUSS (The University of Tokyo Discrete Unit Speech Synthesizer)

## **UTDUSS performance on** discrete challenge 1st place in TTS track 2nd place in Vocoder track

• Hyper-parameter tuning

• Data exclusion

speech

than 16kHz

• Original DAC is configured for audio

• Matching sampling rate to UTMOS

## **UTDUSS Discrete speech unit aquisition**

Backbone model: Descript Audio Codec (DAC)[2]

- RVQGAN based discrete speech feature acquisition model
- Implement techniques to improve the performance discussed on Vocder track section
- DAC decoder is also used as a Vocoder

**DAC model architecture: Improved RVQGAN** 



- Residual Vector quantizer (RVQ) for avoiding codebook collapse
- Adversarial training similar to HiFi-GAN
- Widely used for speech/audio discretization

## UTDUSS Vocoder: **UTDUSS** Vocoder:

## Vocoder: Task objective

Vocoder: recovers speech waveform from discretized speech representation



#### Baseline model: HuBERT-kmeans & HiFi-GAN[Polyak+21]



### **Techuniqus applied for improving UTMOS**

## **Rules**

Data: EXPRESSO dataset[3]

- train/val/test split provided by the organizer
- English multi-speaker dataset
- Includes diverse speaking styles (whisper, laughter)

#### **Evaluation metrics**

- UTMOS[4] : Predicted Naturalness MOS ≠ Human evaluated
- Bitrate : The bitrate of the discretized speech

Achieve Highest UTMOS score with low bitrate as possible

## Ablation study result

**Rules** 



| Model type                 | Bitrate | UTMOS |
|----------------------------|---------|-------|
| baseline                   | 448     | 2.310 |
| DAC (official)             | 24046   | 3.560 |
|                            | 670     | 3.582 |
| w/o hyper-parameter tuning | 670     | 3.578 |
| w/o data exclusion         | 670     | 3.568 |
| w/o matching sampling rate | 1003    | 3.622 |
| Ground truth               |         | 3.579 |

😃 outperform baseline, DAC and Ground truth.

82 • hyperparameter-tuning and data exclusion were effective

• Matching sampling rate degraded UTMOS

## **UTDUSS TTS**

## TTS task objective



## **Techniques applied for improving UTMOS**

#### Data: LJSpeech dataset[5]

- train/val/test split provided by the organizer
- 24 hours, English single-speaker corpus

**Evaluation metrics** 

- UTMOS[4] : Predicted Naturalness MOS ≠ Human evaluated
- Bitrate : The bitrate of the discretized speech

#### Results

#### Model architecture: Transformer[6] Encoder-decoder model Vocoder: SMILEY with codebook size of 256, 512, 1024

Hyperparameter tuning for the sampling parameters. top-p, top-k and temperature Objective: maximize UTMOS on valid set



|                               | Bitrate(↓) | UTMOS(↑) | Rank |
|-------------------------------|------------|----------|------|
| baseline (FastSpeech2)        | 448.3      | 3.73     | 9    |
| Ours w/ codebook size of 1024 | 351.1      | 4.29     | 8    |
| Ours w/ codebook size of 512  | 313.8      | 4.36     | 1    |
| Ours w/ codebook size of 256  | 277.6      | 4.33     | 2    |
| Ground truth                  | -          | 4.43     | -    |

UTDUSS is comparable to ground truth in terms of UTMOS

#### References

[1] X. Chang et al,. Interspeech, 2024

[2] R. Kumar et al,. NeurIPS, 2023.

[3] T. NGuyen et al., Interspeech 2023.

[4] T. Saeki et al., Interspeech, 2022.

[5] K. Ito et al., 2017

[6] A. Vaswani et al, NeurIPS 2017

Saruwatari-Takamichi Lab., The University of Tokyo, Japan. 🔉 ©Wataru Nakata, Sep. 2024.

SLT2024@Macau



